Statistics Solutions

Probability density functions

1. If $p(x)=x / 2$ for x ranging from 0 to 2 , and $p(x)=0$ otherwise, what is the mean of this density?
Answer: $4 / 3$. This is calculated by $E(x)=\int_{0}^{2} x * f(x)=\int_{0}^{2} \frac{1}{2} x^{2}=\left[\frac{1}{6} x^{3}\right]_{0}^{2}=\frac{4}{3}$
2. If $p(x)=2 x / 9$ for $0<x<3$, and $p(x)=0$ otherwise, what is $P(0<x<1)$?

Answer: 1/9
3. What is the variance of a uniform variable with range a to b.

Answer: Between a and b the density is $1 /(b-a)$, so the second moment is

$$
\begin{aligned}
E\left(x^{2}\right) & =\int_{a}^{b} x^{2}(1 /(b-a)) d x=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{\left(b^{2}+a b+a^{2}\right)(b-a)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3} . \\
\sigma_{x}^{2} & =E\left(x^{2}\right)-\mu_{x}^{2}=\frac{b^{2}+a b+a^{2}}{3}-\left(\frac{b+a}{2}\right)^{2}=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

4. If scores are normally distributed with a mean of 35 and a standard deviation of 10 , what percent of the scores is:
(a) greater than 34 ?

Answer: This a normal distribution of $N(35,100)$. We need to compute $P(X>34)=$ $P\left(Z>\frac{34-35}{10}\right)=P(Z>-0.1)=\frac{1}{2}+P(-0.1<Z<0)$. After lookup in the table we get $\frac{1}{2}+0.0398=0.5398$.
(b) smaller than 42 ?
$P(X<42)=P\left(Z<\frac{42-35}{10}\right)=P(Z<0.7)=\frac{1}{2}+P(0<Z<0.7)=\frac{1}{2}+0.2580=$ 0.7580 .
(c) between 28 and 34 ?
$P(28<X<34)=P\left(\frac{28-35}{10}<Z<\frac{34-35}{10}\right)=P(-0.7<Z<-0.1)=P(-0.7<Z<$ $0)-P(-0.1<Z<0)=0.2580-0.0398=0.2182$.
5. The life of Sunshine DVD players is normally distributed with a mean of 4.1 years and a standard deviation of 1.3 years. A DVD player is guaranteed for 3 years. We are interested in the length of time a DVD player lasts.
(a) Find the probability that a DVD player will break down during the guarantee period. We have a normal distribution of $N\left(4.1,1.3^{2}\right)$. We need to calculate $P(X<3)$. $P(X<$ $3)=P\left(Z<\frac{3-4.1}{1.3}\right)=P(Z<-0.85)=\frac{1}{2}-P(-0.85<Z<0)=0.5-0.3023=0.1977$.
(b) Find the probability that a DVD player will last between 2.8 and 6 years. $P(2.8<X<6)=P(-1<Z<1.46)=0.3413+0.4279=0.7692$.
(c) Find the 70th percentile of the distribution for the time a DVD player lasts. $P\left(Z<\frac{a-4.1}{1.3}\right)=0.7 \Rightarrow P\left(0<Z<\frac{a-4.1}{1.3}\right)=0.2 \Rightarrow \frac{a-4.1}{1.3} \approx 0.525 \Rightarrow a \approx 4.789$.

